Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1834: 148913, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580046

RESUMEN

Hypothalamic-pituitary-adrenal (HPA) axis dysregulation is linked to the pathophysiology of depression. Although exogenous adrenocorticotropic hormone (ACTH) is associated with a depressive-like phenotype in rodents, comprehensive neurobehavioral and mechanistic evidence to support these findings are limited. Sprague-Dawley rats (male, n = 30; female, n = 10) were randomly assigned to the control (male, n = 10) or ACTH (male, n = 20; female n = 10) groups that received saline (0.1 ml, sc.) or ACTH (100 µg/day, sc.), respectively, for two weeks. Thereafter, rats in the ACTH group were subdivided to receive ACTH plus saline (ACTH_S; male, n = 10; female, n = 5; 0.2 ml, ip.) or ACTH plus imipramine (ACTH_I; male, n = 10; female, n = 5;10 mg/kg, ip.) for a further four weeks. Neurobehavioral changes were assessed using the forced swim test (FST), the sucrose preference test (SPT), and the open field test (OFT). Following termination, the brain regional mRNA expression of BDNF and CREB was determined using RT-PCR. After two-weeks, ACTH administration significantly increased immobility in the FST (p = 0.03), decreased interaction with the center of the OFT (p < 0.01), and increased sucrose consumption (p = 0.03) in male, but not female rats. ACTH administration significantly increased the expression of BDNF in the hippocampus and CREB in all brain regions in males (p < 0.05), but not in female rats. Imipramine treatment did not ameliorate these ACTH-induced neurobehavioral or molecular changes. In conclusion, ACTH administration resulted in a sex-specific onset of depressive-like symptoms and changes in brain regional expression of neurotrophic factors. These results suggest sex-specific mechanisms underlying the development of depressive-like behavior in a model of ACTH-induced HPA axis dysregulation.


Asunto(s)
Hormona Adrenocorticotrópica , Factor Neurotrófico Derivado del Encéfalo , Modelos Animales de Enfermedad , Sistema Hipotálamo-Hipofisario , Imipramina , Sistema Hipófiso-Suprarrenal , Ratas Sprague-Dawley , Animales , Masculino , Femenino , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Imipramina/farmacología , Ratas , Depresión/metabolismo , Conducta Animal/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
2.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611709

RESUMEN

Solid-phase peptide synthesis (SPPS) is the preferred strategy for synthesizing most peptides for research purposes and on a multi-kilogram scale. One key to the success of SPPS is the continual evolution and improvement of the original method proposed by Merrifield. Over the years, this approach has been enhanced with the introduction of new solid supports, protecting groups for amino acids, coupling reagents, and other tools. One of these improvements is the use of the so-called "safety-catch" linkers/resins. The linker is understood as the moiety that links the peptide to the solid support and protects the C-terminal carboxylic group. The "safety-catch" concept relies on linkers that are totally stable under the conditions needed for both α-amino and side-chain deprotection that, at the end of synthesis, can be made labile to one of those conditions by a simple chemical reaction (e.g., an alkylation). This unique characteristic enables the simultaneous use of two primary protecting strategies: tert-butoxycarbonyl (Boc) and fluorenylmethoxycarbonyl (Fmoc). Ultimately, at the end of synthesis, either acids (which are incompatible with Boc) or bases (which are incompatible with Fmoc) can be employed to cleave the peptide from the resin. This review focuses on the most significant "safety-catch" linkers.


Asunto(s)
Antifibrinolíticos , Técnicas de Síntesis en Fase Sólida , Alquilación , Aminoácidos , Resinas de Plantas , Péptidos
3.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38399458

RESUMEN

A total of nine TIDES (pepTIDES and oligonucleoTIDES) were approved by the FDA during 2023. The four approved oligonucleotides are indicated for various types of disorders, including amyotrophic lateral sclerosis, geographic atrophy, primary hyperoxaluria type 1, and polyneuropathy of hereditary transthyretin-mediated amyloidosis. All oligonucleotides show chemically modified structures to enhance their stability and therapeutic effectiveness as antisense or aptamer oligomers. Some of them demonstrate various types of conjugation to driving ligands. The approved peptides comprise various structures, including linear, cyclic, and lipopeptides, and have diverse applications. Interestingly, the FDA has granted its first orphan drug designation for a peptide-based drug as a highly selective chemokine antagonist. Furthermore, Rett syndrome has found its first-ever core symptoms treatment, which is also peptide-based. Here, we analyze the TIDES approved in 2023 on the basis of their chemical structure, medical target, mode of action, administration route, and common adverse effects.

4.
Molecules ; 29(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338330

RESUMEN

With the COVID-19 pandemic behind us, the U.S. Food and Drug Administration (FDA) has approved 55 new drugs in 2023, a figure consistent with the number authorized in the last five years (53 per year on average). Thus, 2023 marks the second-best yearly FDA harvest after 2018 (59 approvals) in all the series. Monoclonal antibodies (mAbs) continue to be the class of drugs with the most approvals, with an exceptional 12, a number that makes it the most outstanding year for this class. As in 2022, five proteins/enzymes have been approved in 2023. However, no antibody-drug conjugates (ADCs) have been released onto the market. With respect to TIDES (peptides and oligonucleotides), 2023 has proved a spectacular year, with a total of nine approvals, corresponding to five peptides and four oligonucleotides. Natural products continue to be the best source of inspiration for drug development, with 10 new products on the market. Three drugs in this year's harvest are pegylated, which may indicate the return of pegylation as a method to increase the half-lives of drugs after the withdrawal of peginesatide from the market in 2013. Following the trends in recent years, two bispecific drugs have been authorized in 2023. As in the preceding years, fluorine and/or N-aromatic heterocycles are present in most of the drugs. Herein, the 55 new drugs approved by the FDA in 2023 are analyzed exclusively on the basis of their chemical structure. They are classified as the following: biologics (antibodies, proteins/enzymes); TIDES (peptide and oligonucleotides); combined drugs; pegylated drugs; natural products; nitrogen aromatic heterocycles; fluorine-containing molecules; and other small molecules.


Asunto(s)
Productos Biológicos , Aprobación de Drogas , Estados Unidos , Humanos , Flúor , Pandemias , Preparaciones Farmacéuticas/química , Industria Farmacéutica , Péptidos/uso terapéutico , Anticuerpos Monoclonales , Productos Biológicos/uso terapéutico , Productos Biológicos/química , United States Food and Drug Administration , Oligonucleótidos/uso terapéutico , Polietilenglicoles
5.
ChemSusChem ; 17(8): e202301639, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38200662

RESUMEN

As of December 2023, the use of common solvent N,N-dimethyl formamide (DMF) will be restricted in the European Union because of its reproductive health hazard. Industrial facilities must comply with stricter exposure limits, and researchers are recommended to find alternative solvents. Here we explain the restrictions on DMF, which disciplines are affected, and how to substitute DMF to keep research and development commercially relevant.


Asunto(s)
Dimetilformamida , Solventes , Dimetilformamida/química , Solventes/química , Unión Europea , Investigación , Humanos
6.
J Pept Sci ; 30(2): e3538, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37609959

RESUMEN

Morpholine, which scores 7.5 in terms of greenness and is not a regulated substance, could be considered a strong contender for Fmoc removal in solid-phase peptide synthesis (SPPS). Morpholine in dimethylformamide (DMF) (50%-60%) efficiently removes Fmoc in SPPS, minimizes the formation of diketopiperazine, and almost avoids the aspartimide formation. As a proof of concept, somatostatin has been synthesized using 50% morpholine in DMF with the same purity as when using 20% piperidine-DMF.


Asunto(s)
Fluorenos , Técnicas de Síntesis en Fase Sólida , Fluorenos/química , Morfolinas
7.
Methods Protoc ; 6(6)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37987357

RESUMEN

One approach to enhance the bioavailability and half-life of peptides in vivo is through N-methylation of one or more of the amino acids within the peptide sequence. However, commercially available Fmoc-N-Me-AA-OHs are limited and often expensive. In this study, a solid-phase synthesis method for Fmoc-N-Me-AA-OH was developed using a 2-chlorotrityl chloride (2-CTC) resin as a temporary protective group for the carboxylic acid strategy. Two strategies for the alkylation step were compared, employing either dimethyl sulfate or methyl iodide in the Biron-Kessler method. In this work we tested the protocol with two amino acids: Fmoc-Thr(tBu)-OH and Fmoc-ßAla-OH. The first one is an alpha amino acid, very hindered and with the amine group directly influenced by the electronic effects of the carboxy group, whereas in Fmoc-ßAla-OH, the presence of a methylene group weakens this influence due to the intervening carbon atoms. The desired amino acids, Fmoc-N-Me-Thr(tBu)-OH and Fmoc-N-Me-ßAla-OH, were synthesized by both strategies with high yield and purity.

8.
Methods Protoc ; 6(5)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37736965

RESUMEN

Used in solid-phase peptide synthesis (SPPS) for peptides with an acid termination, the 2-chlorotrityl chloride (2-CTC) resin is highly susceptible to moisture, leading to reduced resin loading and lower synthetic yields. It is therefore recommended that the resin be activated with thionyl chloride (SOCl2) before peptide assembly. Here we present an optimized procedure for resin activation that minimizes the use of SOCl2 as the activation reagent and reduces the activation time. Additionally, we demonstrate the feasibility of reusing the 2-CTC resin when following the activation protocol, achieving comparable results to the first usage of the resin. Moreover, we achieved different degrees of resin activation by varying the amount of SOCl2. For instance, the use of 2% SOCl2 in anhydrous dichloromethane (DCM) allowed up to 44% activation of the resin, thereby making it suitable for the synthesis of longer peptides. Alternatively, employing 25% SOCl2 in anhydrous DCM resulted in up to 80% activation with a reaction time of only 5 min in both cases.

9.
Org Biomol Chem ; 21(40): 8125-8135, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37772422

RESUMEN

Peptide Nucleic Acids (PNAs) are an intriguing class of synthetic biomolecules with great potential in medicine. Although PNAs could be considered analogs of oligonucleotides, their synthesis is more like that of peptides. In both cases, a Solid-Phase Synthesis (SPS) approach is used. Herein, the advantage using Boc as a temporal protecting group has been demonstrated to be more favored than Fmoc. In this context, a new PNA SPS strategy has been developed based on a safety-catch protecting group scheme for the exocyclic nitrogen of the side-chain bases and the linker. Sulfinyl (sulfoxide)-containing moieties are fully stable to the trifluoroacetic acid (TFA) used to remove the Boc group, but they can be reduced to the corresponding sulfide derivatives, which are labile in the presence of TFA. The efficiency of this novel synthetic strategy has been demonstrated in the synthesis of the PNA pentamer H-PNA(TATCT)-ßAla-OH.


Asunto(s)
Ácidos Nucleicos de Péptidos , Ácidos Nucleicos de Péptidos/química , Péptidos/química
10.
Adv Sci (Weinh) ; 10(26): e2300472, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37407512

RESUMEN

Antimicrobial peptides (AMPs) are essential elements of thehost defense system. Characterized by heterogenous structures and broad-spectrumaction, they are promising candidates for combating multidrug resistance. Thecombined use of AMPs with other antimicrobial agents provides a new arsenal ofdrugs with synergistic action, thereby overcoming the drawback of monotherapiesduring infections. AMPs kill microbes via pore formation, thus inhibitingintracellular functions. This mechanism of action by AMPs is an advantage overantibiotics as it hinders the development of drug resistance. The synergisticeffect of AMPs will allow the repurposing of conventional antimicrobials andenhance their clinical outcomes, reduce toxicity, and, most significantly,prevent the development of resistance. In this review, various synergies ofAMPs with antimicrobials and miscellaneous agents are discussed. The effect ofstructural diversity and chemical modification on AMP properties is firstaddressed and then different combinations that can lead to synergistic action,whether this combination is between AMPs and antimicrobials, or AMPs andmiscellaneous compounds, are attended. This review can serve as guidance whenredesigning and repurposing the use of AMPs in combination with other antimicrobialagents for enhanced clinical outcomes.


Asunto(s)
Antiinfecciosos , Enfermedades Transmisibles , Humanos , Antibacterianos/farmacología , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/química , Antiinfecciosos/uso terapéutico , Antiinfecciosos/química , Enfermedades Transmisibles/tratamiento farmacológico
11.
Molecules ; 28(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37513361

RESUMEN

Here, we report the synthesis of disulfide-reducing agents 2-(dibenzylamino) propane-1,3-dithiol (DPDT) and 2-(dibenzylamino)-2-methylpropane-1,3-dithiol (DMPDT) from serinol and methyl serinol, respectively. DPDT was found to show greater stability than DMPDT. Hence, the effectiveness of DPDT as a reducing agent was evaluated in both liquid and solid phases. The reducing capacity of this agent was comparable to that of DTT.

12.
ACS Omega ; 8(17): 15631-15637, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37151509

RESUMEN

The solid-phase synthesis of Met-containing peptides using a fluorenylmethoxycarbonyl (Fmoc)/tert-butyl (tBu) protection scheme is inevitably accompanied by two stubborn side reactions, namely, oxidation and S-alkylation (tert-butylation), which result in the formation of Met(O) and sulfonium salt impurities of the target peptide, respectively. These two reactions are acid-catalyzed, and they occur during the final trifluoroacetic (TFA)-based acidolytic cleavage step. Herein, we developed two new cleavage solutions that eradicate the oxidation and reduce S-alkylation. TFA-anisole-trimethylsilyl chloride (TMSCl)-Me2S-triisopropylsilane (TIS) containing 1 mg of triphenyl phosphine per mL of solution was the optimal mixture for Cys-containing peptides, while for the remaining peptides, TIS was not required. Both cleavage solutions proved to be excellent when sensitive amino acids such as Cys and Trp were involved. TMSCl did not affect either of these sensitive amino acids. Reversing the sulfonium salt to free Met-containing peptide was achieved by heating the peptide at 40 °C for 24 h using 5% acetic acid.

13.
Biomedicines ; 11(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37239105

RESUMEN

The year 2022 witnessed the control of the COVID-19 pandemic in most countries through social and hygiene measures and also vaccination campaigns. It also saw a decrease in total approvals by the U.S. Food and Drug Administration (FDA). Nevertheless, there was no fall in the Biologics class, which was boosted through the authorization of 15 novel molecules, thus maintaining the figures achieved in previous years. Indeed, the decrease in approvals was only for the category of small molecules. Monoclonal antibodies (mAbs) continued to be the drug class with the most approvals, and cancer remained the most targeted disease, followed by autoimmune conditions, as in previous years. Interestingly, the FDA gave the green light to a remarkable number of bispecific Biologics (four), the highest number in recent years. Indeed, 2022 was another year without the approval of an antimicrobial Biologic, although important advancements were made in targeting new diseases, which are discussed herein. In this work, we only analyze the Biologics authorized in 2022. Furthermore, we also consider the orphan drugs authorized. We not only apply a quantitative analysis to this year's harvest, but also compare the efficacy of the Biologics with those authorized in previous years. On the basis of their chemical structure, the Biologics addressed fall into the following classes: monoclonal antibodies; antibody-drug conjugates; and proteins/enzymes.

14.
Chem Soc Rev ; 52(8): 2764-2789, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37010921

RESUMEN

Peptide nucleic acids (PNAs) are an important class of DNA/RNA mimics that can hybridize complementary chains of nucleic acids with high affinity and specificity. Because of this property and their metabolic stability, PNAs have broad potential applications in different fields. Consisting of a neutral polyamide backbone, PNAs are prepared following the method used for peptide synthesis. In this regard, they are prepared by the sequential coupling of the protected monomers on a solid support using a similar approach to solid-phase peptide synthesis (SPPS). However, PNA synthesis is a little more challenging due to issues of the difficulty on the preparation of monomers and their solubility. Furthermore, the PNA elongation is jeopardized by intra/inter chain aggregation and side reactions. These hurdles can be overcome using different protecting group strategies on the PNA monomer, which also dictate the approach followed to prepare the oligomers. Herein, the main synthetic strategies driven by the protecting group scheme are discussed. However, there is still ample scope for further enhancement of the overall process.


Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos de Péptidos , Ácidos Nucleicos de Péptidos/química , ADN/química , Péptidos , ARN/química
15.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986436

RESUMEN

A total of 37 new drug entities were approved in 2022; although that year registered the lowest number of drug approvals since 2016, the TIDES class consolidated its presence with a total of five authorizations (four peptides and one oligonucleotide). Interestingly, 23 out of 37 drugs were first-in-class and thus received fast-track designation by the FDA in categories such as breakthrough therapy, priority review voucher, orphan drug, accelerated approval, and so on. Here, we analyze the TIDES approved in 2022 on the basis of their chemical structure, medical target, mode of action, administration route, and common adverse effects.

16.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770706

RESUMEN

While 2021 ended with the world engulfed in the COVID-19 Omicron wave, 2022 has ended in almost all countries, except China, with COVID-19 being likened to the flu. In this context, the U.S. Food and Drug Administration (FDA) has authorized only 37 new drugs this year compared to an average of 52 in the last four years. Thus 2022 is the second lowest harvest after 2016 in the last six years. This ranking may be transient and will be confirmed in the coming years. In this regard, the reduction in the number of drugs accepted by the FDA this year applies only to the so-called small molecules as there has been no variation in the respective numbers of biologics or TIDES (peptides and oligonucleotides). Monoclonal antibodies (mAbs) continue to be the class with the most drugs authorized (9), while proteins/enzymes (5) and an antibody-drug conjugate complete the biologics harvest. In 2022, five TIDES and seven drugs inspired by natural products have received the green light, thus showing the same tendency as in previous years. Finally, pharmaceutical agents with nitrogen aromatic heterocycles and/or fluorine atoms continue to be predominant among small molecules this year. Furthermore, three drugs have been approved for imaging, reinforcing the trend in recent years for this class of treatments. A keyword in 2022 is bispecificity since four drugs have this property (two mAbs, one protein, and one peptide). Herein, the 37 new drugs approved by the FDA in 2022 are analyzed. On the basis of chemical structure alone, these drugs are classified as the following: biologics (antibodies, antibody-drug conjugates, proteins/enzymes), TIDES (peptide and oligonucleotides), combined drugs, natural products; nitrogen aromatic heterocycles, fluorine-containing molecules, and other small molecules.


Asunto(s)
Productos Biológicos , COVID-19 , Inmunoconjugados , Estados Unidos , Humanos , Aprobación de Drogas , Flúor , Preparaciones Farmacéuticas/química , Anticuerpos Monoclonales/química , Factores Biológicos , Péptidos/uso terapéutico , Productos Biológicos/uso terapéutico , Productos Biológicos/química , Industria Farmacéutica , United States Food and Drug Administration , Oligonucleótidos
17.
Front Chem ; 10: 1078163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505739

RESUMEN

A series of pyrazolyl-s-triazine compounds with an indole motif was designed, synthesized, and evaluated for anticancer activity targeting dual EGFR and CDK-2 inhibitors. The compounds were tested for cytotoxicity using the MTT assay. Compounds 3h, 3i, and 3j showed promising cytotoxic activity against two cancer cell lines, namely A549, MCF-7, and HDFs (non-cancerous human dermal fibroblasts). Compound 3j was the most active candidate against A549, with an IC50 of 2.32 ± 0.21 µM. Compounds 3h and 3i were found to be the most active hybrids against MCF-7 and HDFs, with an IC50 of 2.66 ± 0.26 µM and 3.78 ± 0.55 µM, respectively. Interestingly, 3i showed potent EGFR inhibition, with an IC50 of 34.1 nM compared to Erlotinib (IC50 = 67.3 nM). At 10 µM, this candidate caused 93.6% and 91.4% of EGFR and CDK-2 inhibition, respectively. Furthermore, 3i enhanced total lung cancer cell apoptosis 71.6-fold (43.7% compared to 0.61% for the control). Given the potent cytotoxicity exerted by 3i through apoptosis-mediated activity, this compound emerges as a promising target-oriented anticancer agent.

18.
Methods Protoc ; 5(6)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36412807

RESUMEN

According to the Food and Drug Administration (FDA), there are two kinds of drugs, namely New Chemical Entities (NCEs) and Biologics [...].

19.
Pharmaceutics ; 14(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36297628

RESUMEN

The super-cationic peptide dendrimers (SCPD) family is a valuable class of antimicrobial peptide candidates for the future development of antibacterial agents against multidrug-resistant gram-negative bacteria. The deep knowledge of their mechanism of action is a major challenge in research, since it may be the basis for future modifications/optimizations. In this work we have explored the interaction between SCPD and membranes through biophysical and microbiological approaches in the case of the G1OLO-L2OL2 peptide. Results support the idea that the peptide is not only adsorbed or close to the surface of the membrane but associated/absorbed to some extent to the hydrophobic-hydrophilic region of the phospholipids. The presence of low concentrations of the peptide at the surface level is concomitant with destabilization of the cell integrity and this may contribute to osmotic stress, although other mechanisms of action cannot be ruled out.

20.
Methods Protoc ; 5(5)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36287044

RESUMEN

Herein we report a practical approach for peptide synthesis using second-generation fibrous polyacrylamide resin (Li-resin, "Li" is coming from the name of its inventor, Yongfu Li). This resin with the corresponding handle was used for solid phase peptide synthesis (SPPS) using a fluorenylmethoxycarbonyl (Fmoc) approach. We reveal that the most appropriate mixing and filtration strategy when using amino-Li-resin in SPPS is via shaking and gravity filtration, instead of mechanical stirring and suction filtration used with other resins. The strategy was demonstrated with the SPPS of H-Tyr-Ile-Ile-Phe-Leu-NH2, which contains the difficult sequence Ile-Ile. The peptide was obtained with excellent purity and yield. We are confident that this strategy will be rapidly implemented by other peptide laboratories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...